Cadherin-7 enhances Sonic Hedgehog signalling by preventing Gli3 repressor formation during neural tube patterning
نویسندگان
چکیده
Sonic Hedgehog (Shh) is a ventrally enriched morphogen controlling dorsoventral patterning of the neural tube. In the dorsal spinal cord, Gli3 protein bound to suppressor-of-fused (Sufu) is converted into Gli3 repressor (Gli3R), which inhibits Shh-target genes. Activation of Shh signalling prevents Gli3R formation, promoting neural tube ventralization. We show that cadherin-7 (Cdh7) expression in the intermediate spinal cord region is required to delimit the boundary between the ventral and the dorsal spinal cord. We demonstrate that Cdh7 functions as a receptor for Shh and enhances Shh signalling. Binding of Shh to Cdh7 promotes its aggregation on the cell membrane and association of Cdh7 with Gli3 and Sufu. These interactions prevent Gli3R formation and cause Gli3 protein degradation. We propose that Shh can act through Cdh7 to limit intracellular movement of Gli3 protein and production of Gli3R, thus eliciting more efficient activation of Gli-dependent signalling.
منابع مشابه
Cadherin-7 enhances Sonic Hedgehog signaling by preventing Gli3 repressor formation during neural tube patterning
متن کامل
Mouse hitchhiker mutants have spina bifida, dorso-ventral patterning defects and polydactyly: identification of Tulp3 as a novel negative regulator of the Sonic hedgehog pathway
The mammalian Sonic hedgehog (Shh) signalling pathway is essential for embryonic development and the patterning of multiple organs. Disruption or activation of Shh signalling leads to multiple birth defects, including holoprosencephaly, neural tube defects and polydactyly, and in adults results in tumours of the skin or central nervous system. Genetic approaches with model organisms continue to...
متن کاملSuppressor of fused controls mid-hindbrain patterning and cerebellar morphogenesis via GLI3 repressor.
Sonic Hedgehog and its GLI transcriptional effectors control foliation complexity during cerebellar morphogenesis by promoting granule cell precursor proliferation. Here, we reveal a novel contribution of Sonic Hedgehog-GLI signaling to cerebellar patterning and cell differentiation by generating mice with targeted deletion of Suppressor of Fused (SuFu), a regulator of Sonic Hedgehog signaling,...
متن کاملSpecific and redundant functions of Gli2 and Gli3 zinc finger genes in skeletal patterning and development.
The correct patterning of vertebrate skeletal elements is controlled by inductive interactions. Two vertebrate hedgehog proteins, Sonic hedgehog and Indian hedgehog, have been implicated in skeletal development. During somite differentiation and limb development, Sonic hedgehog functions as an inductive signal from the notochord, floor plate and zone of polarizing activity. Later in skeletogene...
متن کاملThe Ciliary G-Protein-Coupled Receptor Gpr161 Negatively Regulates the Sonic Hedgehog Pathway via cAMP Signaling
The primary cilium is required for Sonic hedgehog (Shh) signaling in vertebrates. In contrast to mutants affecting ciliary assembly, mutations in the intraflagellar transport complex A (IFT-A) paradoxically cause increased Shh signaling. We previously showed that the IFT-A complex, in addition to its canonical role in retrograde IFT, binds to the tubby-like protein, Tulp3, and recruits it to ci...
متن کامل